2023 Annual Drinking Water Quality Report

CBSUD Board of Directors

Jerry Leinart President

James C. Patterson Vice-President

Elwood Jones Secretary/Treasurer

Kenneth Pendergrass Director
Ronnie Clack Director
Kirk Hammack Director
Bear Boyle Director

PWS ID: 1160029

Our Drinking Water Is Regulated

This is your water quality report for January 1 to December 31, 2023. This report is intended to provide you with important information about your drinking water and the efforts made by the water system to provide safe drinking water.

In the water loss audit submitted to the Texas Water Development Board for the time period of Jan-Dec 2023, our system lost an estimated 69,263,740 gallons of water. If you have any questions about the water loss audit or water loss, please call (903) 527-3504.

For More Information About Caddo Basin Special Utility District

If you have questions about this report or concerning your water utility, please contact Kevin Wendland, General Manager, by calling (903) 527-3504 or writing to 156 CR 1118, Greenville, TX 75401-7514. You may also send an email to webadmin@caddobasin.com. We want our valued customers to be informed about their water utility. The Board Meetings are held the Fourth Tuesday of each month at The District Office located at 156 CR 1118, Greenville, TX.

En Español Este reporte incluye información importante sobre el agua para tomar. Para asistencia en español, favor de llamar al teléfono (903) 527-3504-para hablar con una persona bilingüe en español.

Source of Drinking Water

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- -Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- -Inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- -Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.
- -Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems.
- -Radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the number of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Contaminants may be found in drinking water that may cause taste, color, or odor problems. These types of problems are not necessarily causes for health concerns. For more information on taste, odor, or color of drinking water, please contact the system's business office.

Where Do We Get Our Drinking Water?

CADDO BASIN SUD provides surface water from NORTH TEXAS MWD WYLIE WTP. NORTH TEXAS MWD WYLIE WTP provides purchase surface water from Lake Lavon Reservoir located in Collin County.

CADDO BASIN SUD provides surface water from CITY OF FARMERSVILLE. CITY OF FARMERSVILLE provides purchase surface water from NORTH TEXAS MWD WYLIE WTP Lake Lavon Reservoir located in Collin County.

Source Water Assessment

TCEQ completed an assessment of your source water and results indicate that some of your sources are susceptible to certain contaminants. The sampling requirements for your water system are based on the susceptibility and previous sample data. Any detections of these contaminants may be found in this Consumer Confident Report. For more information on source water assessments and production efforts at our system, contact Kevin Wendland, General Manager (903) 527-3504.

All Drinking Water May Contain Contaminants

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPAs Safe Drinking Water Hotline at (800) 426-4791.

Cryptosporidium and Drinking Water

You may be more vulnerable than the general population to certain microbial contaminants, such as Cryptosporidium, in drinking water. Infants, some elderly, or immunocompromised persons such as those undergoing chemotherapy for cancer; persons who have undergone organ transplants; those who are undergoing treatment with steroids; and people with HIV/AIDS or other immune system

disorders, can be particularly at risk from infections. You should seek advice about drinking water from your physician or health care providers. Additional guidelines on appropriate means to lessen the risk of infection by Cryptosporidium are available from the Safe Drinking Water Hotline (800) 426-4791.

Lead and Drinking Water

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We are responsible for providing high quality drinking water, but we cannot control the variety of materials used in plumbing components. When your water has been

sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

Information About Source Water Assessments

A Source Water Susceptibility Assessment for your drinking water source(s) is currently being updated by the Texas Commission on Environmental Quality. This information describes the susceptibility and types of constituents that may come into contact with your drinking water source based on human activities and natural conditions. The information contained in the assessment allows us to focus source water protection strategies.

For more information about your sources of water, please refer to the Source Water Assessment Viewer available at the following URL: http://tceq.maps.arcgis.com/apps/webappviewer/index.html Further details about sources and source-water assessments are available in Drinking Water Watch at the following URL:

http://dww2.tceq.texas.gov/DWW/

DEFINITIONS

The following tables contain scientific terms and measures, some of which may require explanation.

Action Level-The concentration of contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Action Level Goal (ALG)-The level of a contaminant in drinking water below which there is no known or expected risk to health. ALGs allow for a margin of safety.

AVG- Regulatory compliance with some MCLs are based on running annual average of monthly samples.

Maximum Contaminant Level or MCL: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

LEVEL 1 ASSESSMENT- A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.

Maximum Contaminant Level Goal or MCLG: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

LEVEL 2 ASSESSMENT- A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

MAXIMUM CONTAMINANT DISINFECTANT LEVEL OR MRDL- The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

MAXIMUM RESIDUAL DISINFECTANT LEVEL or MRDLG: The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

MFL- million fibers per liter (a measure of asbestos)

ppm: milligrams per liter or parts per million - or one ounce in 7,350 gallons of water.

mrem: -millirems per year (a measure of radiation absorbed by the body)

NA- not applicable.

NTU-nephelometric turbidity units (a measure of turbidity)

Treatment Technique or TT: A required process intended to reduce the level of a contaminant in drinking water.

ppt parts per trillion, or nanograms per liter (ng/L)

pCi/L picocuries per liter (a measure of radioactivity)

ppb: micrograms per liter or parts per billion - or one ounce in 7,350,000 gallons of water.

ppq: parts per quadrillion, or picograms per liter (pg/L)

		CADDO	BASIN S				IG RES	ULTS
				Colifor	m Bacteri	ia		
Maximum Contaminant Level Goal	Total Coliform Maximum Contaminant	Highest No. of Positive	Fecal Coliform or E. Coli Maximum Contaminant	E. Coli or F	of Positive ecal Coliform nples	Violatio	n	Likely Source of Contamination
0	1 Positive Monthly Sample	0	0		0	N		Naturally present in the environment.
Lead and Copper	Date Sampled	MCLG	Action Level (AL)	90th Percentile	# Sites Over AL	Units	Violation	Likely Source of Contamination
Copper	2023	1.3	1.3	0.985	0	ppm	N	Erosion of natural deposits; Leaching from wood preservatives; Corrosion of household plumbing system
Lead	2023	0	15	1.79	0	ppb	N	Corrosion of household plumbing systems; Erosion of natural deposits.
			2023 W	ater Q	uality To	est Resu	ults	
Disinfection By-Products	Collection Date	Highest Level Detected	Range of Individual Samples	MCLG	MCL	Units	Violation	Likely Source of Contamination
Haloacetic Acids (HAA5)	2023	20	4.2 – 24.6	No goal for the total	60	ppb	N	By-product of drinking water disinfection
*The value in th	e Highest Level	or Average De	etected column is t	he highest av	erage of all HA	A5 sample resu	lts collected	at a location over a year
Total Trihalomethan es (TTHM)	2023	44	12.6-56.2	No goal for the total	80	ppb	N	By-product of drinking water disinfection
	e Highest Level	or Average De	etected column is t	he highest av	erage of all TTH	IM sample resu	lts collected	at a location over a year
Inorganic Contaminants	Collection Date	Highest Level Detected	Range of Individual Samples	MCLG	MCL	Units	Violation	Likely Source of Contamination
Nitrate [measured as Nitrogen]	2023	0.423	0.423 - 0.423	10	10	ppm	N	Runoff from fertilizer use; Leaching from septic tanks; sewage; Erosion of natural deposits.
			Dis	sinfect	ant Res	idual		
Disinfectant Residual	Year	Average Level	Range of Levels Detected	MRDL	MRDLG	Unit of Measure	Violation (Y/N)	Source in Drinking Water
Chloramines	2023	2.05	.84-3.77	4	4	ppm	N	Water additive used to control microbes.

	UCMR5									
Contaminants	Collection Date	Average Level Detected	Range of Levels Detected	Units						
PFBA	2023	.0082	.00560129	ppb						
PFBS	2023	.000975	<mrl0039< td=""><td>ppb</td><td></td></mrl0039<>	ppb						
PFHxA	2023	.0023375	<mrl0075< td=""><td>ppb</td><td></td></mrl0075<>	ppb						
PFPeA	2023	.0024	<mrl0082< td=""><td>ppb</td><td></td></mrl0082<>	ppb						

NOTE: UMCR5 Results may be found at <u>Fifth Unregulated Contaminant Monitoring Rule Data Finder | US EPA</u> by searching PWS ID TX1160029.

NTMWD TX0430044

Regulated Contaminants

Disinfectan	Collection	Highest	Range of	MCLG	MCL	Units	Violation	Likely
ts and	Date	Level	Levels					Source of
Disinfectio		Detected	Detected					Contamina
n By-								tion
Products								
Bromate	2023	Levels	0-0	5	10	ppb	No	By-product
		lower than						of drinking
		detect						water
		level						ozonation.

NOTE: Not all sample results may have been used for calculating the Highest Level Detected because some results may be part of an evaluation to determine where compliance sampling should occur in the future. TCEQ only requires one sample annually for compliance testing. For Bromate, compliance is based on the running annual average.

Inorganic Contaminants

	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violatio n	Likely Source of Contamination
Antimony	2023	Levels lower than detect level	0 - 0	6	6	ppb	No	Discharge from petroleum refineries; fire retardants; ceramics; electronics; solder; and test addition.
Arsenic	2023	Levels lower than detect level	0 - 0	0	10	ppb	No	Erosion of natural deposits; runoff from orchards; runoff from glass and electronics production wastes.
Barium	2023	0.048	0.041 - 0.048	2	2	ppm	No	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits.
Beryllium	2023	Levels lower than detect level	0 - 0	4	4	ppb	No	Discharge from metal refineries and coal- burning factories; discharge from electrical, aerospace, and defense industries.
Cadmium	2023	Levels lower than detect level	0 - 0	5	5	ppb	No	Corrosion of galvanized pipes; erosion of natural deposits; discharge from metal refineries; runoff from waste batteries and paints.

Inorganic Contaminants Cont'd

Chromium	2023	Levels lower than detect level	0 - 0	100	100	ppb	No	Discharge from steel and pulp mills; erosion of natural deposits.
Cyanide	2023	199	028-199	0-0	200	ppb	No	Discharge from steel/metal factories; Discharge from plastics and fertilizer factories.
Fluoride	2023	0.968	0.537-0.968	4	4	ppm	No	Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories.
Mercury	2023	Levels lower than detect level	0-0	2	2	ppb	No	Erosion of natural deposits; discharge from refineries and factories; runoff from landfills; runoff from cropland.
Nitrate (measured as Nitrogen)	2023	0.790	0.067-0.790	10	10	ppm	No	Runoff from fertilizer use; leaching from septic tanks; sewage; erosion of natural deposits.
Selenium	2023	Levels lower than detect level	0 - 0	50	50	ppb	No	Discharge from petroleum and metal refineries; erosion of natural deposits; discharge from mines.
Thallium	2023	Levels lower than detect level	0 - 0	0.5	2	ppb	No	Discharge from electronics, glass, and leaching from ore- processing sites; drug factories.

Nitrate Advisory: Nitrate in drinking water at levels above 10 ppm is a health risk for infants of less than six months of age. High nitrate levels in drinking water can cause blue baby syndrome. Nitrate levels may rise quickly for short periods of time because of rainfall or agricultural activity. If you are caring for an infant, you should ask advice from your health care provider.

Turbidity

	Limit (Treatment Technique)	Level Detected	Violation	Likely Source of Contamination
Highest single measurement	1 NTU	0.73	No	Soil runoff.
Lowest monthly percentage (%) meeting limit	0.3 NTU	98.0%	No	Soil runoff.

NOTE: Turbidity is a measurement of the cloudiness of the water caused by suspended particles. We monitor it because it is a good indicator of water quality and the effectiveness of our filtration.

	Radioactive Contaminants										
	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination			
Beta/photon emitters	2022	4.7	4.7 – 4.7	0	50	pCi/L	No	Decay of natural and man- made deposits.			
Gross alpha excluding radon and uranium	2022	Levels lower than detect level	0 - 0	0	15	pCi/L	No	Erosion of natural deposits.			
Radium	2022	Levels lower than detect level	0 - 0	0	5	pCi/L	No	Erosion of natural deposits.			

	Maximum Residual Disinfectant Level										
Disinfectant Type	Year	Average Level of Quarterly Data	Lowest Result of Single Sample	Highest Result of Single Sample	MRDL	MRDLG	Units	Source of Chemical			
Chlorine Dioxide	2023	0.01	0	0.59	0.80	0.80	ppm	Disinfectant.			
Chlorite	2023	0.16	0	0.88	1.00	N/A	ppm	Disinfectant.			

NOTE: Water providers are required to maintain a minimum chlorine disinfection residual level of 0.5 parts per million (ppm) for systems disinfecting with chloramines and an annual average chlorine disinfection residual level of between 0.5 (ppm) and 4 parts per million (ppm).

Total Organic Carbon

The percentage of Total Organic Carbon (TOC) removal was measured each month and the system met all TOC removal requirements set.

Cryptosporidium and Giardia									
Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	Units	Likely Source of Contamination				
Cryptosporidium	2023	0	0 - 0	(Oo) Cysts/L	Human and animal fecal waste. Naturally present in the environment.				
Giardia	2023	0.18	0.09-0.18	(Oo) Cysts/L	Human and animal fecal waste. Naturally present in the environment.				

Unregulated Contaminants									
Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	Units	Likely Source of Contamination				
Chloroform	2023	19.2	3.87-19.2	ppb	By-product of drinking water disinfection.				
Bromoform	2023	3.52	1.01-3.52	ppb	By-product of drinking water disinfection.				
Bromodichloromethane	2023	20.7	5.24-20.7	ppb	By-product of drinking water disinfection.				
Dibromochloromethane	2023	13.6	3.4-13.6	ppb	By-product of drinking water disinfection.				

NOTE: Bromoform, chloroform, bromodichloromethane, and dibromochloromethane are disinfection by-products. There is no maximum contaminant level for these chemicals at the entry point to distribution. These contaminants are included in the Disinfection By-Products TTHM compliance data.

Synthetic organic contaminants including pesticides and herbicides	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
2, 4, 5 - TP (Silvex)	2022	Levels lower than detect level	0 - 0	50	50	ppb	No	Residue of banned herbicide.
2, 4 - D	2022	Levels lower than detect level	0 - 0	70	70	ppb	No	Runoff from herbicide used on row crops.
Alachlor	2023	Levels lower than detect level	0 - 0	0	2	ppb	No	Runoff from herbicide used on row crops.
Aldicarb	2022	Levels lower than detect level	0 - 0	1	3	ppb	No	Runoff from agricultural pesticide.
Aldicarb Sulfone	2022	Levels lower than detect level	0 - 0	1	2	ppb	No	Runoff from agricultural pesticide.
Aldicarb Sulfoxide	2022	Levels lower than detect level	0 - 0	1	4	ppb	No	Runoff from agricultural pesticide.
Atrazine	2023	0.2	0.1-0.2	3	3	ppb	No	Runoff from herbicide used on row crops.
Benzo (a) pyrene	2023	Levels lower than detect level	0 - 0	0	200	ppt	No	Leaching from linings of water storage tanks and distribution lines.
Carbofuran	2022	Levels lower than detect level	0 - 0	40	40	ppb	No	Leaching of soil fumigant used on rice and alfalfa.
Chlordane	2022	Levels lower than detect level	0 - 0	0	2	ppb	No	Residue of banned termiticide.
Dalapon	2022	Levels lower than detect level	0 - 0	200	200	ppb	No	Runoff from herbicide used on rights of way.
Di (2-ethylhexyl) adipate	2023	Levels lower than detect level	0 - 0	400	400	ppb	No	Discharge from chemical factories.
Di (2-ethylhexyl) phthalate	2023	Levels lower than detect level	0 - 0	0	6	ppb	No	Discharge from rubber and chemical factories.
Dibromochloropropane (DBCP)	2022	Levels lower than detect level	0 - 0	0	200	ppt	No	Runoff / leaching from soil fumigant used on soybeans, cotton, pineapples, and orchards.
Dinoseb	2022	Levels lower than detect level	0 - 0	7	7	ppb	No	Runoff from herbicide used on soybeans and vegetables.
Endrin	2023	Levels lower than detect level	0 - 0	2	2	ppb	No	Residue of banned insecticide.
Ethylene dibromide	2022	Levels lower than detect level	0 - 0	0	50	ppt	No	Discharge from petroleium refineries.
Heptachlor	2023	Levels lower than detect level	0 - 0	0	400	ppt	No	Residue of banned termiticide.
Heptachlor epoxide	2023	Levels lower than detect level	0 - 0	0	200	ppt	No	Breakdown of heptachlor.

Synthetic organic contaminants including pesticides and herbicides Cont'd	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
Hexachlorobenzene	2023	Levels lower than detect level	0 - 0	0	1	ppb	No	Discharge from metal refineries and agricultural chemical factories.
Hexachlorocyclopentadiene	2022	Levels lower than detect level	0 - 0	50	50	ppb	No	Discharge from chemical factories.
Lindane	2023	Levels lower than detect level	0 - 0	200	200	ppt	No	Runoff / leaching from insecticide used on cattle, lumber, and gardens.
Methoxychlor	2023	Levels lower than detect level	0 - 0	40	40	ppb	No	Runoff / leaching from insecticide used on fruits, vegetables, alfalfa, and livestock.
Oxamyl [Vydate]	2022	Levels lower than detect level	0 - 0	200	200	ppb	No	Runoff / leaching from insecticide used on apples, potatoes, and tomatoes.
Pentachlorophenol	2022	Levels lower than detect level	0 - 0	0	1	ppb	No	Discharge from wood preserving factories.
Picloram	2022	Levels lower than detect level	0 - 0	500	500	ppb	No	Herbicide runoff.
Simazine	2023	0.12	0.06-0.12	4	4	ppb	No	Herbicide runoff.
Toxaphene	2023	Levels lower than detect level	0 - 0	0	3	ppb	No	Runoff / leaching from insecticide used on cotton and cattle.

Volatile Organic Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
1, 1, 1 – Trichloroethane	2023	Levels lower than detect level	0 - 0	200	200	ppb	No	Discharge from metal degreasing sites and other factories.
1, 1, 2 - Trichloroethane	2023	Levels lower than detect level	0 - 0	3	5	ppb	No	Discharge from industrial chemical factories.
1, 1 - Dichloroethylene	2023	Levels lower than detect level	0 - 0	7	7	ppb	No	Discharge from industrial chemical factories.
1, 2, 4 - Trichlorobenzene	2023	Levels lower than detect level	0 - 0	70	70	ppb	No	Discharge from textile-finishing factories.
1, 2 - Dichloroethane	2023	Levels lower than detect level	0 - 0	0	5	ppb	No	Discharge from industrial chemical factories.
1, 2 - Dichloropropane	2023	Levels lower than detect level	0 - 0	0	5	ppb	No	Discharge from industrial chemical factories.
Benzene	2023	Levels lower than detect level	0 - 0	0	5	ppb	No	Discharge from factories; leaching from gas storage tanks and landfills.
Carbon Tetrachloride	2023	Levels lower than detect level	0 - 0	0	5	ppb	No	Discharge from chemical plants and other industrial activities.
Chlorobenzene	2023	Levels lower than detect level	0 - 0	100	100	ppb	No	Discharge from chemical and agricultural chemical factories.
Dichloromethane	2023	Levels lower than detect level	0 - 0	0	5	ppb	No	Discharge from pharmaceutical and chemical factories.
Ethylbenzene	2023	Levels lower than detect level	0 - 0	0	700	ppb	No	Discharge from petroleum refineries.
Styrene	2023	Levels lower than detect level	0 - 0	100	100	ppb	No	Discharge from rubber and plastic factories; leaching from landfills.
Tetrachloroethylene	2023	Levels lower than detect level	0 - 0	0	5	ppb	No	Discharge from factories and dry cleaners.
Toluene	2023	Levels lower than detect level	0 - 0	1	1	ppm	No	Discharge from petroleum factories.
Trichloroethylene	2023	Levels lower than detect level	0 - 0	0	5	ppb	No	Discharge from metal degreasing sites and other factories.
Vinyl Chloride	2023	Levels lower than detect level	0 - 0	0	2	ppb	No	Leaching from PVC piping; discharge from plastics factories.
Xylenes	2023	Levels lower than detect level	0 - 0	10	10	ppm	No	Discharge from petroleum factories; discharge from chemical factories.
cis - 1, 2 - Dichloroethylene	2023	Levels lower than detect level	0 - 0	70	70	ppb	No	Discharge from industrial chemical factories.
o - Dichlorobenzene	2023	Levels lower than detect level	0 - 0	600	600	ppb	No	Discharge from industrial chemical factories.
p - Dichlorobenzene	2023	Levels lower than detect level	0 - 0	75	75	ppb	No	Discharge from industrial chemical factories.
trans - 1, 2 - Dicholoroethylene	2023	Levels lower than detect level	0 - 0	100	100	ppb	No	Discharge from industrial chemical factories.

Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	Units	Likely Source of Contamination	
Aluminum	2023	Levels lower than detect level	0 - 0	ppm	Erosion of natural deposits.	
Calcium	2023	69.8	26.5- 69.8	ppm	Abundant naturally occurring element.	
Chloride	2023	107	30 – 107	ppm	Abundant naturally occurring element; used in water purification; by-product of oil field activity.	
Iron	2023	0.516	0.061- 0.516	ppm	Erosion of natural deposits; iron or steel water delivery equipment or facilities.	
Magnesium	2023	9.77	4.90- 9.77	ppm	Abundant naturally occurring element.	
Manganese	2023	0.158	0.0068- 0.158 ppm		Abundant naturally occurring element.	
Nickel	2023	0.0048	0.0047- 0.0048	ppm	Erosion of natural deposits.	
рН	2023	9.17	6.39- 9.17	units	Measure of corrosivity of water.	
Silver	2023	Levels lower than detect level	0 - 0	ppm	Erosion of natural deposits.	
Sodium	2023	95.4	26.5 – 95.4	ppm	Erosion of natural deposits; by-product of oil field activity.	
Sulfate	2023	171	76.8-171	ppm	Naturally occurring; common industrial by-product; by-product of oil field activity.	
Total Alkalinity as CaCO3	2023	139	51-139	ppm	Naturally occurring soluble mineral salts.	
Total Dissolved Solids	2023	492	263-492	ppm	Total dissolved mineral constituents in water.	
Total Hardness as CaCO3	2023	312	82-312	ppm	Naturally occurring calcium.	
Zinc	2023	Levels lower than detect level	0 - 0	ppm	Moderately abundant naturally occurring element used in the metal industry.	

Violations Table						
Violation Type	Violation Begin	Violation End	Violation Explanation			
			The North Texas MWD Wylie WTP water system PWS ID TX0430044 has violated the monitoring and reporting requirements set by Texas Commission on Environmental Quality (TCEQ) in Chapter 30, Section 290< Subchapter F. Public water systems are required to collect and submit chemical samples to the TCEQ on a regular basis.			
			We failed to monitor and/or report the following constituents: Nitrate			
			This/These violation(s) occurred in the monitoring period(s): First Quarter 01/01/2023 - 3/31/2023			
NITRATE MONITORING, ROUTINE MAJOR	Jan -23	Mar -23	Results of regular monitoring are an indicator of whether or not your drinking water is safe from chemical contamination. We did not complete all monitoring and/or reporting for chemical constituents, and therefore TCEQ cannot be sure of the safety of your drinking water during that time.			
			We are taking the following actions to address the issue: The sample was taken during the required sampling period and results are within compliance criteria. The violation was due to a delay in receiving lab results from a third-party lab. Once the results were released to TCEQ the violation was resolved.			
			Please share this information with all people who drink this water, especially those who may not have received this notice directly (i.e., people in apartments, nursing homes, schools, and businesses). You can do this by posting this notice in a public place or distributing copies by hand or mail.			
			If you have questions concerning this matter you may contact NTMWD Water System Manger - Treatment Mr. Gabriel Bowden at (972) 608-7009			
			Posted/Delivered on: 3-28-2024			

Violations

Public Notification Rule

The Public Notification Rule helps to ensure that consumers will always know if there is a problem with their drinking water. These notices immediately alert consumers if there is a serious problem with their drinking water (e.g., a boil water emergency).

Violation Type	Violation Begin	Violation End	Violation Explanation
PUBLIC NOTICE RULE LINKED TO VIOLATION	03/06/2023	04/11/2023	We failed to adequately notify you, our drinking water consumers, about a violation of the drinking water regulations.

			(City of Fa	armersvi	lle TX043	004		
Lead and Copper	Date Sampled	MCLG	Action Level (AL)	90th Percentile	# Sites Over AL	Units	Violation	Likely Source of	Contamination
Copper	2023	1.3	1.3	0.96	0	ppm	ppm N Erosion of natural deposits; Leachin preservatives; Corrosion of househouses.		
Lead	2023	0	15	3 0		ppb	N	Corrosion of household plumbing systems; Erosion of natural deposits.	
Disinfectio n By- Products	Collection Date	Highest Level Detected	Range of Individual Samples	MCLG	LG MCL Unit		Violation	Likely Source of Contamination	
Haloacetic Acids (HAA5)	2023	17	7.7-19.4	No goal for the total	60 ppb		N	By-product of drinking water disinfection	
l	*The value	in the Highest Leve	l or Average Dete	cted column is	the highest av	erage of all HA	AA5 sample resu	ılts collected at a loca	tion over a year
Total Trihalome thanes (TTHM)	2023	36	9.38-34.7	No goal for the total	-		N	By-product of drinking water disinfection	
	*The value i	n the Highest Level	or Average Dete	cted column is	the highest av	erage of all TTI	HM sample resu	ılts collected at a loca	tion over a year.
Inorga nic Conta minant	Collection Date	Highest Level Detected	Range of Individual Samples	MCI	.G	MCL	Units	Violation	Likely Source of Contamination
Nitrate [measu red as Nitroge n]	2023	0.0531	0.0531-0.053	31 10		10	ppm	N	Runoff from fertilizer use, leaching from septic tanks, sewage; Erosion of natural deposits.
		•		Disi	nfectant	Residua	1		
Disinfec tant	Year	Average Level	Range of Levels Detected	MRDL	MRDLG	Units of Measure	Violation (Y/N)	Source in Drinking Water	
Chlorine	2023	2.21	.50-3.70	4	4 ppm		N	Water additives used to control microbes	
1		<u> </u>	L		Violatio	ns			
Lead a	nd Coppe	er Rule							
		ule protects public						ly by reducing water lumbing materials.	r corrosivity. Lead and
		ооррог спіс	anning water	manny nome	2011001011 01 16	aa ana coppe	i somaning p	idinaning materials.	

Violation End

2023

Violation Begin

10/01/2023

FOLLOW-UP OR ROUTINE TAP M/R (LCR)

Violation Type

Violation Explanation

There was a delay in the report being received during this

time frame.

Violations

Public Notification Rule

The Public Notification Rule helps to ensure that consumers will always know if there is a problem with their drinking water. These notices immediately alert consumers if there is a serious problem with their drinking water (e.g., a boil water emergency).

Violation Type	Violation Begin	Violation End	Violation Explanation		
PUBLIC NOTICE RULE LINKED TO VIOLATION	09/03/2023	10/20/2023	We failed to adequately notify you, our drinking water consumers, about a violation of the drinking water regulations.		